Membrane voltage fluctuations reduce spike frequency adaptation and preserve output gain in CA1 pyramidal neurons in a high-conductance state.

نویسندگان

  • Fernando R Fernandez
  • Tilman Broicher
  • Alan Truong
  • John A White
چکیده

Modulating the gain of the input-output function of neurons is critical for processing of stimuli and network dynamics. Previous gain control mechanisms have suggested that voltage fluctuations play a key role in determining neuronal gain in vivo. Here we show that, under increased membrane conductance, voltage fluctuations restore Na(+) current and reduce spike frequency adaptation in rat hippocampal CA1 pyramidal neurons in vitro. As a consequence, membrane voltage fluctuations produce a leftward shift in the frequency-current relationship without a change in gain, relative to an increase in conductance alone. Furthermore, we show that these changes have important implications for the integration of inhibitory inputs. Due to the ability to restore Na(+) current, hyperpolarizing membrane voltage fluctuations mediated by GABA(A)-like inputs can increase firing rate in a high-conductance state. Finally, our data show that the effects on gain and synaptic integration are mediated by voltage fluctuations within a physiologically relevant range of frequencies (10-40 Hz).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gain control in CA1 pyramidal cells using changes in somatic conductance.

Gain modulation is an important feature of neural activity. Previous work has focused on the ability of background synaptic noise to modulate the slope (i.e., gain) of the frequency-current (f-I) relationship in neurons. To date, demonstrations of gain control that are independent of synaptic noise have been limited. We investigated the effects of increasing somatic conductance in the form of t...

متن کامل

Spike phase locking in CA1 pyramidal neurons depends on background conductance and firing rate.

Oscillatory activity in neuronal networks correlates with different behavioral states throughout the nervous system, and the frequency-response characteristics of individual neurons are believed to be critical for network oscillations. Recent in vivo studies suggest that neurons experience periods of high membrane conductance, and that action potentials are often driven by membrane potential fl...

متن کامل

Reduction of spike afterdepolarization by increased leak conductance alters interspike interval variability.

Data from neurons in vivo have shown that spike output can often sustain episodes of high variability. Theoretical studies have indicated that the high conductance state of neurons brought on by synaptic activity can contribute to an increase in the variability of spike output by decreasing the integration timescale of the neuron. In the present work, we were interested in understanding how bac...

متن کامل

Frequency dependence of CA3 spike phase response arising from h-current properties

The phase of firing of hippocampal neurons during theta oscillations encodes spatial information. Moreover, the spike phase response to synaptic inputs in individual cells depends on the expression of the hyperpolarization-activated mixed cation current (I h ), which differs between CA3 and CA1 pyramidal neurons. Here, we compared the phase response of these two cell types, as well as their int...

متن کامل

Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons.

The membrane conductance of a pyramidal neuron in vivo is substantially increased by background synaptic input. Increased membrane conductance, or shunting, does not simply reduce neuronal excitability. Recordings from hippocampal pyramidal neurons using dynamic clamp revealed that adaptation caused complete cessation of spiking in the high conductance state, whereas repetitive spiking could pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 10  شماره 

صفحات  -

تاریخ انتشار 2011